Friday, 21 June 2013

Definition of Fock space

                                         Fock space is the (Hilbert) direct sum of tensor products of copies of a single-particle Hilbert space H
F_\nu(H)=\bigoplus_{n=0}^{\infty}S_\nu H^{\otimes n} =\mathbb{C} \oplus H \oplus \left(S_\nu \left(H \otimes H\right)\right) \oplus \left(S_\nu \left( H \otimes H \otimes H\right)\right) \oplus \ldots
Here \mathbb{C}, a complex scalar, represents the states of no particles, H the state of one particle, S_\nu (H\otimes H) the states of two identical particles etc.
A typical state in F_\nu(H) is given by
|\Psi\rangle_\nu= |\Psi_0\rangle_\nu  \oplus |\Psi_1\rangle_\nu \oplus |\Psi_2\rangle_\nu \oplus \ldots = a_0 |0\rangle \oplus |\psi_1\rangle \oplus \sum_{ij} a_{ij}|\psi_{2i}, \psi_{2j} \rangle_\nu \oplus \ldots
where
|0\rangle is a vector of length 1, called the vacuum state and \,a_0 \in \mathbb{C} is a complex coefficient,
 |\psi_1\rangle \in H is a state in the single particle Hilbert space,
 |\psi_{2i} \psi_{2j} \rangle_\nu = |\psi_{2i}\rangle|\psi_{2j}\rangle = \frac{1}{2}(|\psi_{2i}\rangle \otimes|\psi_{2j}\rangle + (-1)^\nu|\psi_{2j}\rangle\otimes|\psi_{2i}\rangle) \in S_\nu(H \otimes H), and  a_{ij} = \nu a_{ji} \in \mathbb{C} is a complex coefficient
etc.
The convergence of this infinite sum is important if F_\nu(H) is to be a Hilbert space. Technically we require F_\nu(H) to be the Hilbert space completion of the algebraic direct sum. It consists of all infinite tuples |\Psi\rangle_\nu = (|\Psi_0\rangle_\nu , |\Psi_1\rangle_\nu , 
|\Psi_2\rangle_\nu, \ldots) such that the norm, defined by the inner product is finite
\| |\Psi\rangle_\nu \|_\nu^2 = \sum_{n=1}^\infty \langle \Psi_n |\Psi_n \rangle_\nu < \infty
where the n particle norm is defined by
 \langle \Psi_n | \Psi_n \rangle_\nu = \lim_{M\to \infty}\sum_{i_1,\ldots i_n, j_1, \ldots j_n < M}a_{i_1,\ldots, i_n}^*a_{j_1, \ldots, j_n} \langle \psi_{i_1}| \psi_{j_1} \rangle\cdots \langle \psi_{i_n}| \psi_{j_n} \rangle
i.e. the restriction of the norm on the tensor product H^{\otimes n}
For two states
|\Psi\rangle_\nu= |\Psi_0\rangle_\nu  \oplus |\Psi_1\rangle_\nu \oplus |\Psi_2\rangle_\nu \oplus \ldots = a_0 |0\rangle \oplus |\psi_1\rangle \oplus \sum_{ij} a_{ij}|\psi_{2i}, \psi_{2j} \rangle_\nu \oplus \ldots, and
|\Phi\rangle_\nu=|\Phi_0\rangle_\nu  \oplus |\Phi_1\rangle_\nu \oplus |\Phi_2\rangle_\nu \oplus \ldots = b_0 |0\rangle \oplus |\phi_1\rangle \oplus \sum_{ij} b_{ij}|\phi_{2i}, \phi_{2j} \rangle_\nu \oplus \ldots
the inner product on F_\nu(H) is then defined as
\langle \Psi |\Phi\rangle_\nu:= \sum_n \langle \Psi_n| \Phi_n \rangle_\nu  = a_0^* b_0 + \langle\psi_1 | \phi_1 \rangle +\sum_{ijkl}a_{ij}^*b_{kl}\langle \phi_{2i}|\psi_{2k}\rangle\langle\psi_{2j}| \phi_{2l} \rangle_\nu + \ldots
where we use the inner products on each of the n-particle Hilbert spaces. Note that, in particular the n particle subspaces are orthogonal for different n.

No comments:

Post a Comment