Friday, 21 June 2013

Fock space

                              The Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space H. It is named after V. A. Fock who first introduced it in his paper Konfigurationsraum und zweite Quantelung. 
Informally, a Fock space consists of a set of Hilbert spaces representing a zero particle state, a one particle state, a two particle state, and so on. If the identical particles are bosons, the n-particle state is a symmetrized tensor product of n single particle Hilbert spacesH. If the identical particles are fermions, the n-particle state is an antisymmetrized tensor product of n single particle Hilbert spaces H. A state in Fock space is a linear combination of states, where each state has a definite number of particles.
Technically, the Fock space is (the Hilbert space completion of) the direct sum of the symmetric or antisymmetric tensors in the tensor powers of a single-particle Hilbert space H:
F_\nu(H)=\overline{\bigoplus_{n=0}^{\infty}S_\nu H^{\otimes n}}
Here S_\nu is the operator which symmetrizes or antisymmetrizes a tensor, depending on whether the Hilbert space describes particles obeying bosonic (\nu = +) or fermionic (\nu = -) statistics, and the overline represents the completion of the space. The bosonic (resp. fermionic) Fock space can alternatively be constructed as (the Hilbert space completion of) the symmetric tensors F_+(H) = \overline{S^*H} (resp. alternating tensors F_-(H) = \overline{{\bigwedge}^* H}). For every basis for H there is a natural basis of the Fock space, the Fock states.

No comments:

Post a Comment