Thursday, 21 November 2013

                                       Identification of Cosmic rays

In the 1920s the term "cosmic rays" was coined by Robert Millikan who made measurements of ionization due to cosmic rays from deep under water to high altitudes and around the globe. Millikan believed that his measurements proved that the primary cosmic rays were gamma rays, i.e., energetic photons. And he proposed a theory that they were produced in interstellar space as by-products of the fusion of hydrogen atoms into the heavier elements, and that secondary electrons were produced in the atmosphere by Compton scattering of gamma rays. But then, in 1927, J. Clay found evidence, later confirmed in many experiments, of a variation of cosmic ray intensity with latitude, which indicated that the primary cosmic rays are deflected by the geomagnetic field and must therefore be charged particles, not photons. In 1929,Bothe and Kolhörster discovered charged cosmic-ray particles that could penetrate 4.1 cm of gold. Charged particles of such high energy could not possibly be produced by photons from Millikan's proposed interstellar fusion process.
In 1930, Bruno Rossi predicted a difference between the intensities of cosmic rays arriving from the east and the west that depends upon the charge of the primary particles - the so-called "east-west effect." Three independent experiments found that the intensity is, in fact, greater from the west, proving that most primaries are positive. During the years from 1930 to 1945, a wide variety of investigations confirmed that the primary cosmic rays are mostly protons, and the secondary radiation produced in the atmosphere is primarily electrons, photons and muons. In 1948, observations with nuclear emulsions carried by balloons to near the top of the atmosphere showed that approximately 10% of the primaries are helium nuclei (alpha particles) and 1% are heavier nuclei of the elements such as carbon, iron, and lead.
During a test of his equipment for measuring the east-west effect, Rossi observed that the rate of near-simultaneous discharges of two widely separated Geiger counters was larger than the expected accidental rate. In his report on the experiment, Rossi wrote "... it seems that once in a while the recording equipment is struck by very extensive showers of particles, which causes coincidences between the counters, even placed at large distances from one another." In 1937 Pierre Auger, unaware of Rossi's earlier report, detected the same phenomenon and investigated it in some detail. He concluded that high-energy primary cosmic-ray particles interact with air nuclei high in the atmosphere, initiating a cascade of secondary interactions that ultimately yield a shower of electrons, and photons that reach ground level.
Soviet physicist Sergey Vernov was the first to use radiosondes to perform cosmic ray readings with an instrument carried to high altitude by a balloon. On 1 April 1935, he took measurements at heights up to 13.6 kilometers using a pair of Geiger counters in an anti-coincidence circuit to avoid counting secondary ray showers.
Homi J. Bhabha derived an expression for the probability of scattering positrons by electrons, a process now known as Bhabha scattering. His classic paper, jointly with Walter Heitler, published in 1937 described how primary cosmic rays from space interact with the upper atmosphere to produce particles observed at the ground level. Bhabha and Heitler explained the cosmic ray shower formation by the cascade production of gamma rays and positive and negative electron pairs.

Energy distribution of Cosmic Rays

Measurements of the energy and arrival directions of the ultra-high energy primary cosmic rays by the techniques of "density sampling" and "fast timing" of extensive air showers were first carried out in 1954 by members of the Rossi Cosmic Ray Group at the Massachusetts Institute of Technology. The experiment employed eleven scintillation detectors arranged within a circle 460 meters in diameter on the grounds of the Agassiz Station of the Harvard College Observatory. From that work, and from many other experiments carried out all over the world, the energy spectrum of the primary cosmic rays is now known to extend beyond 1020 eV. A huge air shower experiment called the Auger Project is currently operated at a site on the pampas of Argentina by an international consortium of physicists, led by James Cronin, 1980 Nobel Prize in Physics of the University of Chicago and Alan Watson of the University of Leeds. Their aim is to explore the properties and arrival directions of the very highest-energy primary cosmic rays. The results are expected to have important implications for particle physics and cosmology, due to a theoretical Greisen–Zatsepin–Kuzmin limit to the energies of cosmic rays from long distances (about 160 million light years) which occurs above 1020 eV because of interactions with the remnant photons from the big bang origin of the universe.
In November 2007, the Auger Project team announced some preliminary results. These showed that the directions of origin of the 27 highest-energy events were strongly correlated with the locations of active galactic nuclei (AGNs). The results support the theory that at the centre of each AGN is a large black hole exerting a magnetic field strong enough to accelerate a bare proton to energies of 1020 eV and higher.
High-energy gamma rays (>50 MeV photons) were finally discovered in the primary cosmic radiation by an MIT experiment carried on the OSO-3 satellite in 1967. Components of both galactic and extra-galactic origins were separately identified at intensities much less than 1% of the primary charged particles. Since then, numerous satellite gamma-ray observatories have mapped the gamma-ray sky. The most recent is the Fermi Observatory, which has produced a map showing a narrow band of gamma ray intensity produced in discrete and diffuse sources in our galaxy, and numerous point-like extra-galactic sources distributed over the celestial sphere.

Sources of cosmic rays

Early speculation on the sources of cosmic rays included a 1934 proposal by Baade and Zwicky suggesting cosmic rays originating from supernovae. A 1948 proposal by Horace W. Babcock suggested that magnetic variable stars could be a source of cosmic rays. Subsequently in 1951, Y. Sediko et al. identified the Crab Nebula as a source of cosmic rays. Since then, a wide variety of potential sources for cosmic rays began to surface, including supernovaeactive galactic nucleiquasars, and gamma-ray bursts.
Later experiments have helped to identify the sources of cosmic rays with greater certainty. In 2009, a paper presented at the International Cosmic Ray Conference(ICRC) by scientists at the Pierre Auger Observatoryshowed ultra-high energy cosmic rays (UHECRs) originating from a location in the sky very close to the radio galaxy Centaurus A, although the authors specifically stated that further investigation would be required to confirm Cen A as a source of cosmic rays. However, no correlation was found between the incidence of gamma-ray bursts and cosmic rays, causing the authors to set a lower limit of 10−6 erg cm−2 on the flux of 1 GeV-1 TeV cosmic rays from gamma-ray bursts.
In 2009, supernovae were said to have been "pinned down" as a source of cosmic rays, a discovery made by a group using data from the Very Large Telescope. This analysis, however, was disputed in 2011 with data from PAMELA, which revealed that "spectral shapes of [hydrogen and helium nuclei] are different and cannot be described well by a single power law", suggesting a more complex process of cosmic ray formation. In February 2013, though, research analyzing data from Fermi revealed through an observation of neutral pion decay that supernovae were indeed a source of cosmic rays, with each explosion producing roughly 3 × 1042 - 3 × 1043 J of cosmic rays. However, supernovae do not produce all cosmic rays, and the proportion of cosmic rays that they do produce is a question which cannot be answered without further study.

No comments:

Post a Comment