Friday, 21 June 2013

Holomorphic Fock space

                               Holomorphic Fock space is defined to be the vector space \mathcal F of holomorphic functions f(z) on C with
\displaystyle{{1\over \pi} \iint_{\Bbb C} |f(z)|^2 e^{-|z|^2} \, dxdy}
finite.
It has inner product
\displaystyle{(f_1,f_2)= {1\over \pi} \iint_{\Bbb C} f_1(z)\overline{f_2(z)} e^{-|z|^2} \, dxdy.}
\mathcal F is a Hilbert space with orthonormal basis
\displaystyle{e_n(z)={z^n\over \sqrt{n!}}}
for n ≥ 0. Moreover the power series expansion of a holomorphic function in \mathcal F gives its expansion with respect to this basis. 
Thus for z in C
\displaystyle{ |f(z)| =\left|\sum_{n\ge 0} a_n z^n\right|\le \sqrt{\pi} \|f\| e^{|z|^2/2},}
so that evaluation at z is gives a continuous linear functional on \mathcal F.
In fact
\displaystyle{ f(a) =(f,E_a)}
where
\displaystyle{E_a(z)=\sum_{n\ge 0} {(E_a,e_n)z^n\over \sqrt{n!}}=\sum_{n\ge 0} {z^n\overline{a}^n\over n!} = e^{z\overline{a}}.}
Thus in particular \mathcal F is a reproducing kernel Hilbert space.
For f in \mathcal F and z in C define
\displaystyle{ W_{\mathcal F}(z)f(w)=e^{-|z|^2} e^{w\overline{z}} f(w-z).}
Then
\displaystyle{W_{\mathcal F}(z_1)W_{\mathcal F}(z_2)= e^{-i\Im z_1\overline{z_2}}  W_{\mathcal F}(z_1+z_2),}
so this gives a unitary representation of the Weyl commutation relations. Now
 \displaystyle{W_{\mathcal F}(a)E_0=e^{-|a|^2} E_a.}
It follows that the representation W_{\mathcal F} is irreducible.
Indeed any function orthogonal to all the Ea must vanish, so that their linear span is dense in \mathcal F.
If P is an orthogonal projection commuting with W(z), let f = P E0. Then
\displaystyle{f(z)=(PE_0,E_z)=e^{|z|^2}(PE_0,W_{\mathcal F}(z)E_0)=(PE_{-z},E_0)=\overline{f(-z)}.}
The only holomorphic function satisfying this condition is the constant function. So
 \displaystyle{PE_0=\lambda E_0},
with λ = 0 or 1. Since E0 is cyclic, it follows that P = 0 or I.
By the Stone-von Neumann theorem there is a unitary operator \mathcal U from L2(R) onto \mathcal F, unique up to multiplication by a scalar, intertwining the two representations of the Weyl commutation relations. By Schur's lemma and the Gelfand-Naimark construction, the marix coefficient of any vector determines the vector up to a scalar multiple. Since the matrix coefficients of F = E0 and f = H0 are equal, it follows that the unitary \mathcal U is uniquely determined by the properties
\displaystyle{W_{\mathcal F}(a) \mathcal{U} = \mathcal{U} W(a)}
and
\displaystyle{\mathcal{U}H_0 = E_0.}
Hence for f in L2(R)
\displaystyle{\mathcal{U}f(z)= (\mathcal{U}f,E_z) = (f,\mathcal{U}^* E_z) = e^{-|z|^2}(f,  \mathcal{U}^* W_{\mathcal F}(z)E_0) =e^{-|z|^2}(W(-z)f,H_0),}
so that
\displaystyle{\mathcal{U}f(z) ={1\over \sqrt{2\pi}}\int_{-\infty}^\infty e^{-(x^2 +y^2)} e^{-2ixy}f(t+x) e^{-t^2/2} \, dt ={1\over \sqrt{2\pi}}\int_{-\infty}^\infty B(z,t) f(t)\, dt,}
where
 \displaystyle{B(z,t)= \exp \,[-z^2 -t^2/2 +zt].}
The operator \mathcal U is called the Bargmann transform and B is called the Bargmann kernel. 
The adjoint of \mathcal U is given by the formula:
\displaystyle{\mathcal{U}^*F(t)={1\over \pi} \iint_{\mathbf C} B(\overline{z},t) F(z)\, dx dy.}

No comments:

Post a Comment