Friday, 21 June 2013

Fock model

                                 The action of SU(1,1) on holomorphic Fock space was described by Bargmann (1970) and Itzykson (1967).
The metaplectic double cover of SU(1,1) can be constructed explicitly as pairs (g, γ) with
\displaystyle{g=\begin{pmatrix} \alpha & \beta \\ \overline{\beta} & \overline{\alpha} \end{pmatrix}}
and
\displaystyle{\gamma^2=\alpha.}
If g = g1g2, then
\displaystyle{\gamma = \gamma_1\gamma_2\left(1 +{\beta_1\overline{\beta_2}\over \alpha_1\alpha_2}\right)^{1/2},}
using the power series expansion of (1 + z)1/2 for |z| < 1.
The metaplectic representation is a unitary representation π(g, γ) of this group satisfying the covariance relations
\displaystyle{\pi(g,\gamma) W_{\mathcal F}(z) \pi(g,\gamma)^*=  W_{\mathcal F}(g\cdot z),}
where
\displaystyle{g\cdot z=\alpha z + \beta \overline{z}.}
Since \mathcal F is a reproducing kernel Hilbert space, any bounded operator T on it corresponds to a kernel given by a power series of its two arguments. In fact if
\displaystyle{K_T(a,b)=(TE_{\overline{b}},E_a),}
and F in \mathcal F, then
TF(a)=(TF,E_a)=(F,T^*E_a)=\frac{1}{\pi} \iint_{\mathbf C} F(z)\overline{(T^*E_a,E_z)} e^{-|z|^2}\, dx dy=\frac{1}{\pi} \iint_{\mathbf C} K_T(a,\overline{z}) F(z)e^{-|z|^2}\, dxdy.
The covariance relations and analyticity of the kernel imply that for S = π(g, γ),
 \displaystyle{K_S(a,z)=C \cdot \exp\,{1\over 2\alpha}(\overline{\beta} z^2 + 2az - \beta a^2)}
for some constant C. Direct calculation shows that
\displaystyle{C=\gamma^{-1}}
leads to an ordinary representation of the double cover. 
Coherent states can again be defined as the orbit of E0 under the metaplectic group.
For w complex, set
\displaystyle{ F_w(z)=e^{wz^2/2}.}
Then Fw lies in  \mathcal F if and only if |w| < 1.
In particular F0 = 1 = E0.
Moreover
\pi(g,\gamma)F_w= (\overline{\alpha} +\overline{\beta}w)^{-\frac{1}{2}} F_{gw}=\frac{1}{\overline{\gamma}} \left(1+{\overline{\beta}\over \overline{\alpha}}w\right)^{-1/2}F_{gw},
where
\displaystyle{gw={\alpha w + \beta\over \overline{\beta}w + \overline{\alpha}} .}
Similarly the functions zFw lie in  \mathcal F and form an orbit of the metaplectic group:
\displaystyle{\pi(g,\gamma)[zF_w](z)= (\overline{\alpha} +\overline{\beta}w)^{-3/2} zF_{gw}(z).}
Since (FwE0) = 1, the matrix coefficient of the function E0 = 1 is given by[15]
\displaystyle{(\pi(g,\gamma)1,1)=\gamma^{-1}.}

No comments:

Post a Comment