Friday, 21 June 2013

Development of matrix mechanics

                        In 1925, Werner Heisenberg, Max Born, and Pascual Jordan formulated the matrix mechanics representation of quantum mechanics.

Epiphany at Helgoland

In 1925 Werner Heisenberg was working in Göttingen on the problem of calculating the spectral lines of hydrogen. By May 1925 he began trying to describe atomic systems by observables only. On June 7, to escape the effects of a bad attack of hay fever, Heisenberg left for the pollen free North Sea island of Helgoland. While there, in between climbing and learning by heart poems from Goethe's West-östlicher Diwan, he continued to ponder the spectral issue and eventually realised that adopting non-commuting observables might solve the problem, and he later wrote 
"It was about three o' clock at night when the final result of the calculation lay before me. At first I was deeply shaken. I was so excited that I could not think of sleep. So I left the house and awaited the sunrise on the top of a rock."

The Three Fundamental Papers

After Heisenberg returned to Göttingen, he showed Wolfgang Pauli his calculations, commenting at one point: 
"Everything is still vague and unclear to me, but it seems as if the electrons will no more move on orbits."
On July 9 Heisenberg gave the same paper of his calculations to Max Born, saying, "...he had written a crazy paper and did not dare to send it in for publication, and that Born should read it and advise him on it..." prior to publication. Heisenberg then departed for a while, leaving Born to analyse the paper. 
In the paper, Heisenberg formulated quantum theory without sharp electron orbits. Hendrik Kramers had earlier calculated the relative intensities of spectral lines in the Sommerfeld model by interpreting the Fourier coefficients of the orbits as intensities. But his answer, like all other calculations in the old quantum theory, was only correct for large orbits.
Heisenberg, after a collaboration with Kramers,  began to understand that the transition probabilities were not quite classical quantities, because the only frequencies that appear in the Fourier series should be the ones that are observed in quantum jumps, not the fictional ones that come from Fourier-analyzing sharp classical orbits. He replaced the classical Fourier series with a matrix of coefficients, a fuzzed-out quantum analog of the Fourier series. Classically, the Fourier coefficients give the intensity of the emitted radiation, so in quantum mechanics the magnitude of the matrix elements of the position operator were the intensity of radiation in the bright-line spectrum.
The quantities in Heisenberg's formulation were the classical position and momentum, but now they were no longer sharply defined. Each quantity was represented by a collection of Fourier coefficients with two indices, corresponding to the initial and final states. When Born read the paper, he recognized the formulation as one which could be transcribed and extended to the systematic language of matrices,  which he had learned from his study under Jakob Rosanes  at Breslau University. Born, with the help of his assistant and former student Pascual Jordan, began immediately to make the transcription and extension, and they submitted their results for publication; the paper was received for publication just 60 days after Heisenberg’s paper.  A follow-on paper was submitted for publication before the end of the year by all three authors.  (A brief review of Born’s role in the development of the matrix mechanics formulation of quantum mechanics along with a discussion of the key formula involving the non-commutivity of the probability amplitudes can be found in an article by Jeremy Bernstein.  A detailed historical and technical account can be found in Mehra and Rechenberg’s book The Historical Development of Quantum Theory. Volume 3. The Formulation of Matrix Mechanics and Its Modifications 1925–1926.)
Up until this time, matrices were seldom used by physicists; they were considered to belong to the realm of pure mathematics. Gustav Mie had used them in a paper on electrodynamics in 1912 and Born had used them in his work on the lattices theory of crystals in 1921. While matrices were used in these cases, the algebra of matrices with their multiplication did not enter the picture as they did in the matrix formulation of quantum mechanics. Born, however, had learned matrix algebra from Rosanes, as already noted, but Born had also learned Hilbert’s theory of integral equations and quadratic forms for an infinite number of variables as was apparent from a citation by Born of Hilbert’s work Grundzüge einer allgemeinen Theorie der Linearen Integralgleichungen published in 1912.  Jordan, too was well equipped for the task. For a number of years, he had been an assistant to Richard Courant at Göttingen in the preparation of Courant and David Hilbert’s book Methoden der mathematischen Physik I, which was published in 1924.  This book, fortuitously, contained a great many of the mathematical tools necessary for the continued development of quantum mechanics.
In 1926, John von Neumann became assistant to David Hilbert, and he would coin the term Hilbert space to describe the algebra and analysis which were used in the development of quantum mechanics .

Heisenberg's reasoning

Before matrix mechanics, the old quantum theory described the motion of a particle by a classical orbit, with well defined position and momentum X(t), P(t), with the restriction that the time integral over one period T of the momentum times the velocity must be a positive integer multiple of Planck's constant.
 \int_0^T P \;dX = n h   .
While this restriction correctly selects orbits with more or less the right energy values En, the old quantum mechanical formalism did not describe time dependent processes, such as the emission or absorption of radiation.
When a classical particle is weakly coupled to a radiation field, so that the radiative damping can be neglected, it will emit radiation in a pattern which repeats itself every orbital period. The frequencies which make up the outgoing wave are then integer multiples of the orbital frequency, and this is a reflection of the fact that X(t) is periodic, so that its Fourier representation has frequencies 2πn/T only.

X(t) = \sum_{n=-\infty}^\infty  e^{2\pi i nt / T} X_n
 .
The coefficients Xn are complex numbers. The ones with negative frequencies must be the complex conjugates of the ones with positive frequencies, so that X(t) will always be real,
 X_n = X_{-n}^*  .
A quantum mechanical particle, on the other hand, can't emit radiation continuously, it can only emit photons. Assuming that the quantum particle started in orbit number n, emitted a photon, then ended up in orbit number m, the energy of the photon is EnEm, which means that its frequency is (EnEm)/h.
For large n and m, but with nm relatively small, these are the classical frequencies by Bohr's correspondence principle
 E_n-E_m \approx h(n-m)/T .
In the formula above, T is the classical period of either orbit n or orbit m, since the difference between them is higher order in h. But forn and m small, or if n − m is large, the frequencies are not integer multiples of any single frequency.
Since the frequencies which the particle emits are the same as the frequencies in the fourier description of its motion, this suggests that something in the time-dependent description of the particle is oscillating with frequency (EnEm)/h. Heisenberg called this quantityXnm, and demanded that it should reduce to the classical Fourier coefficients in the classical limit. For large values of nm but with n −m relatively small, Xnm is the(nm)th Fourier coefficient of the classical motion at orbit n. Since Xnm has opposite frequency to Xmn, the condition that X is real becomes
X_{nm}=X_{mn}^* .
By definition, Xnm only has the frequency (EnEm)/h, so its time evolution is simple:
 X_{nm}(t) = e^{2\pi i(E_n - E_m)t/h} X_{nm}(0)  .
This is the original form of Heisenberg's equation of motion.
Given two arrays Xnm and Pnm describing two physical quantities, Heisenberg could form a new array of the same type by combining the terms XnkPkm, which also oscillate with the right frequency. Since the Fourier coefficients of the product of two quantities is the convolution of the Fourier coefficients of each one separately, the correspondence with Fourier series allowed Heisenberg to deduce the rule by which the arrays should be multiplied,

(XP)_{mn} = \sum_{k=0}^\infty X_{mk} P_{kn}
 .
Born pointed out that this is the law of matrix multiplication, so that the position, the momentum, the energy, all the observable quantities in the theory, are interpreted as matrices. Under this multiplication rule, the product depends on the order: XP is different from PX.
The X matrix is a complete description of the motion of a quantum mechanical particle. Because the frequencies in the quantum motion are not multiples of a common frequency, the matrix elements cannot be interpreted as the Fourier coefficients of a sharp classical trajectory. Nevertheless, as matrices, X(t) and P(t) satisfy the classical equations of motion; also see Ehrenfest's theorem, below.

Matrix basics

When it was introduced by Werner Heisenberg, Max Born and Pascual Jordan in 1925, matrix mechanics was not immediately accepted and was a source of controversy, at first. Schrödinger's later introduction of wave mechanics was greatly favored.
Part of the reason was that Heisenberg's formulation was in an odd mathematical language, for the time, while Schrödinger's formulation was based on familiar wave equations. But there was also a deeper sociological reason. Quantum mechanics had been developing by two paths, one under the direction of Einstein and the other under the direction of Bohr. Einstein emphasized wave-particle duality, while Bohr emphasized the discrete energy states and quantum jumps. DeBroglie had shown how to reproduce the discrete energy states in Einstein's framework--- the quantum condition is the standing wave condition, and this gave hope to those in the Einstein school that all the discrete aspects of quantum mechanics would be subsumed into a continuous wave mechanics.
Matrix mechanics, on the other hand, came from the Bohr school, which was concerned with discrete energy states and quantum jumps. Bohr's followers did not appreciate physical models which pictured electrons as waves, or as anything at all. They preferred to focus on the quantities which were directly connected to experiments.
In atomic physics, spectroscopy gave observational data on atomic transitions arising from the interactions of atoms with light quanta. The Bohr school required that only those quantities which were in principle measurable by spectroscopy should appear in the theory. These quantities include the energy levels and their intensities but they do not include the exact location of a particle in its Bohr orbit. It is very hard to imagine an experiment which could determine whether an electron in the ground state of a hydrogen atom is to the right or to the left of the nucleus. It was a deep conviction that such questions did not have an answer.
The matrix formulation was built on the premise that all physical observables are represented by matrices, whose elements are indexed by two different energy levels. The set of eigenvalues of the matrix were eventually understood to be the set of all possible values that the observable can have. Since Heisenberg's matrices are Hermitian, the eigenvalues are real.
If an observable is measured and the result is a certain eigenvalue, the corresponding eigenvector is the state of the system immediately after the measurement. The act of measurement in matrix mechanics 'collapses' the state of the system. If one measures two observables simultaneously, the state of the system collapses to a common eigenvector of the two observables. Since most matrices don't have any eigenvectors in common, most observables can never be measured precisely at the same time. This is the uncertainty principle.
If two matrices share their eigenvectors, they can be simultaneously diagonalized. In the basis where they are both diagonal, it is clear that their product does not depend on their order because multiplication of diagonal matrices is just multiplication of numbers. The uncertainty principle, by contrast, is an expression of the fact that often two matrices A and B do not always commute, i.e., that AB − BA does not necessarily equal 0. The fundamental commutation relation of matrix mechanics,
\sum_k ( X_{nk} P_{km} - P_{nk} X_{km}) = {ih\over 2\pi} ~ \delta_{nm}
implies then that there are no states which simultaneously have a definite position and momentum.
This principle of uncertainty holds for many other pairs of observables as well. For example, the energy does not commute with the position either, so it is impossible to precisely determine the position and energy of an electron in an atom.

No comments:

Post a Comment